

Third Semester B.E. Degree Examination, Feb./Mar.2022 Engineering Mathematics – III

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Find a Fourier Series to represent $f(x) = x x^2$ from $x = -\pi$ to $x = \pi$. Hence prove that $\frac{\pi^2}{12} = \frac{1}{1^2} \frac{1}{2^2} + \frac{1}{3^2} \dots$ (08 Marks)
 - b. Obtain a Fourier series of $f(x) = \begin{cases} x, & 0 < x < 1 \\ 0, & 1 < x < 2 \end{cases}$ (06 Marks)
 - c. Find the half-range Fourier sine series of $f(x) = e^x$ in 0 < x < 1. (06 Marks)

OR

2 a. Find the Fourier series expansion upto second harmonic using the following table of values:

X	0	π	2π	π	4π	5π	2π
		3	3		3	3	
у	1.0	1.4	1.9	1.7	1.5	1.2	1.0

(08 Marks)

b. Express $f(x) = (\pi - x)^2$ as a Fourier series of period 2π in the interval $0 < x < 2\pi$.

(06 Marks)

c. Obtain the Half range cosine series of $f(x) = x^2$ in $0 \le x \le \pi$. (06 Marks)

Module-2

3 a. Find the Fourier transform of the function, $f(x) = \begin{cases} 1, & \text{for } |x| \le a \\ 0, & \text{for } |x| > a \end{cases}$ and hence evaluate

$$\int_{0}^{\infty} \frac{\sin ax}{x} \, dx \,. \tag{08 Marks}$$

- b. Find the Fourier cosine transform of $f(x) = e^{-ax}$, a > 0 (06 Marks)
- c. Solve $u_n + 3u_{n-1} 4u_{n-2} = 0$ for $n \ge 2$ given $u_0 = 3$, $u_1 = -2$ using z-transform. (06 Marks)

OR

4 a. Find the Fourier sine transform of e^{-ax} , a>0, x>0 show that $\int_0^\infty \frac{x \sin mx}{a^2 + x^2} dx = \frac{\pi}{2} e^{-am}$, m>0.

(08 Marks)

- b. Find the z-transform of $\cosh\left(\frac{n\pi}{2} + \theta\right)$. (06 Marks)
- c. Find the inverse z-transform of, $\frac{3z^2 + z}{(5z 1)(5z + 2)}$. (06 Marks)

17MAT31

Module-3

5 a. Find the correlation coefficient using the following table as values:

(08 Marks)

X	65	66	67	67	68	69	70	72
у	67	68	65	68	72	72	69	71

b. Obtain an equation of the form y = ax + b given that,

(06 Marks)

X	0	5	10	15	20	25
y	12	15	17	22	24	30

c. Apply Regula-Falsi method to find the root of $xe^x = \cos x$ in four approximations with four decimals in (0, 1).

OR

6 a. Obtain the regression line of y on x for the following table of values:

(08 Marks)

X	1	2	3	4	5	6	7	8	9
y	9	8	10	12	11	13	14	16	15

b. Fit a parabola $y = a + bx + cx^2$ to the following data:

(06 Marks)

X	20	40	60	80	100	120
у	5.5	9.1	14.9	22.8	33.3	46

c. Find the root of the equation $x^4 - x - 9 = 0$ by Newton-Raphson method in three approximations with three decimal places. (Take $x_0 = 2$) (06 Marks)

Module-4

7 a. Use Newton's forward interpolation formula to find y(8) from the table of values, (08 Marks)

| x | 0 | 5 | 10 | 15 | 20 | 25 |

X	0	5	10	15	20	<u>25</u>
y(x)	7	11	14	18 (24	32

b. Determine y at x = 1 using Newton's general interpolation formula given that, (06 Marks)

X	-4	-1	0	2	5
y(x)	1245	33	5.	9	1335

c. Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ using Weddle's rule with h = 1.

(06 Marks)

OR

8 a. Find f(4) using Newton's Backward interpolation formula given that,

4	X	0	1	2	3
	y = f(x)	1	2	1	10

(08 Marks)

b. Apply Lagrange's interpolation formula to find y (x = 10) given that,

<u> </u>		8		Tr C
X	5	6	9	11
v(x)	12	13	14	16

(06 Marks)

c. Apply Simpson's $\frac{1}{3}^{rd}$ formula to evaluate $\int_{0}^{120} V(t)dt$ given that,

t	0	12	24	36	48	60	72	84	96	108	120
V(t)	0	3.60	10.08	18.90	21.60	18.54	10.26	5.40	4.5	5.4	9.0

(06 Marks)

17MAT31

Module-5

- Verify Green's theorem in the plane for $\oint (3x^2 8y^2) dx + (4y 6xy) dy$, where C is the 9 boundary of the region defined by x = 0, y = 0, x + y = 1. (08 Marks)
 - Evaluate $\oint \vec{F} \cdot d\vec{r}$ by Stoke's theorem with $\vec{F} = y^2 \hat{i} + x^2 \hat{j} (x + z)\hat{k}$ and C is the boundary of the triangle with vertices at, (0, 0, 0), (1, 0, 0) and (1, 1, 0). (06 Marks)
 - Show that the geodesies on a plane are straight lines.

(06 Marks)

- Find $\iint \vec{F} \cdot d\vec{S}$, where $F = (2x + 3z)\hat{i} (xz + y)\hat{j} + (y^2 + 2z)\hat{k}$ and S is the surface of the **10** sphere having center at (3, -1, 2) and radius 3. (Use Gauss divergence theorem). (08 Marks)
 - Derive Euler's equation with usual notations as, $\frac{\partial f}{\partial y} \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$. (06 Marks)
 - Find the extremals of the functional,

(06 Marks)